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ABSTRACT

A Bayesian classification method for probabilistic forecasts of precipitation type is presented. The method

considers the vertical wet-bulb temperature profiles associated with each precipitation type, transforms them

into their principal components, andmodels each of these principal components by a skew normal distribution.

A variance inflation technique is used to de-emphasize the impact of principal components corresponding to

smaller eigenvalues, and Bayes’s theorem finally yields probability forecasts for each precipitation type based

on predicted wet-bulb temperature profiles. This approach is demonstrated with reforecast data from the

Global Ensemble Forecast System (GEFS) and observations at 551 METAR sites, using either the full en-

semble or the control run only. In both cases, reliable probability forecasts for precipitation type being either

rain, snow, ice pellets, freezing rain, or freezing drizzle are obtained. Compared to the model output statistics

(MOS) approach presently used by the National Weather Service, the skill of the proposed method is com-

parable for rain and snow and significantly better for the freezing precipitation types.

1. Introduction

Some forms of winter precipitation can have a sub-

stantial impact on air and ground transportation, and

reliable predictions of them can help limit associated

safety hazards and disruptions of travel and commerce

(Stewart et al. 2015, and references therein). Among

several factors that control the precipitation type at the

surface, the vertical profile of wet-bulb temperature Tw

plays a key role (e.g., Bourgouin 2000), and a number of

algorithms have been devised that determine the pre-

cipitation type based on the Tw profile or quantities

derived from it (e.g., Ramer 1993; Baldwin et al. 1994;

Bourgouin 2000; Schuur et al. 2012.) A major challenge

herein is the model uncertainty about the Tw profile on

the forecast day; while the above-mentioned algorithms

still show good skill in detecting snow (SN) and rain

(RA), reliable distinction between ice pellets (IP) and

freezing rain (FZRA) becomes increasingly difficult

when this uncertainty is accounted for (Reeves et al.

2014). A recently proposed algorithm, the spectral bin

classifier (Reeves et al. 2016), pushes the limits of fore-

cast accuracy for IP and FZRA by calculating the mass

fraction of liquid water for a spectrum of hydrometeors

as they descend from the cloud top to the surface, thus

accounting for different rapidity of melting and re-

freezing of smaller hydrometeors compared to larger

ones. Their results still confirm the sensitivity of classi-

fication algorithms to perturbations of the Tw profile.

In a forecast setting where these profiles are derived

fromNWPmodel output, deviations of the true from the

predicted (and interpolated) wet-bulb temperature

profile can be substantial, especially for longer forecast

lead times. In those situations with large uncertainty it

may be more useful to provide probability forecasts of
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each precipitation type, thus communicating the risk for

precipitation to occur in the form of FZRA, say, instead

of stating the most likely outcome only. Operationally,

such probabilistic guidance is currently provided for

the contiguous United States (CONUS) and Alaska by

the Meteorological Development Laboratory (MDL)

to support the National Digital Guidance Database

(NDGD). It is based on a model output statistics (MOS)

approach that is described in Shafer (2010). This method

links the probability of precipitation type (PoPT) to

NWP model output of variables such as 2-m tempera-

ture, 850-hPa temperature, 1000–850-hPa thickness,

1000–500-hPa thickness, and freezing level. This ap-

proach yields conditional probabilities of freezing (IP or

FZRA), frozen (SN), and liquid (RA) precipitation for

forecast lead times up to 192h, but it does not attempt to

distinguish the different freezing types. In this paper we

describe an alternative method that uses (discretized)

vertical wet-bulb temperature profiles as a predictor,

thus aiming to use more information from that profile as

well as statistically modeling the forecast uncertainty. In

section 2 we describe the forecast and observation data

used in this study, which is identical to the data used by

Shafer (2015), and, which thus permits a direct com-

parison between our approach and the operational

method. Our statistical model and the methods for fit-

ting it to the training data are detailed in section 3,

while a detailed evaluation of the precipitation-type

probabilities obtained with this model is the subject of

section 4.We finally discuss the scope of our method and

avenues for further improvement.

2. Data used in this study

a. Observations

Adopting the setup used by Shafer (2015), our method

is calibrated with and validated against weather obser-

vations at aviation routine weather report (METAR)

sites (Allen and Erickson 2001a,b). Precipitation-type

observations were considered for the period 1996–2013

and all months between September and May (the period

September 1996–May 1997 will be referred to as the

‘‘1996 cool season’’), whenever precipitationwas reported

at the corresponding site. Following Shafer (2015), we

discarded sites wheremore than 50%of the precipitation-

type reports were missing, leading to a set of 551 stations

(506 in CONUS, 26 in Alaska, and 19 in Canada).

The original precipitation type reports, valid at 0000,

0600, 1200, and 1800 UTC, were classified into one of ei-

ther three or five mutually exclusive categories. The first

classification follows the MOS precipitation-type cate-

gories shown in Table 1 in Shafer (2015), and distinguishes

‘‘freezing,’’ ‘‘frozen,’’ and ‘‘liquid’’ precipitation, classify-

ing sleet as freezing and any mixture of liquid precipita-

tion with snow as liquid (Allen and Erickson 2001a,b;

Shafer 2015). This three-category classification permits a

direct comparison with the MOS technique used opera-

tionally by the Meteorological Development Laboratory

of the National Weather Service (NWS). In addition, we

consider a five-category classification that differs from the

previous one in that it splits the freezing category up into

freezing rain (FZRA), freezing drizzle (FZDZ), and ice

pellets (IP), in order to study in how far our forecasts are

able to provide probabilistic guidance that reflects the new

certification standards of the Federal Aviation Adminis-

tration (FAA) allowing some aircraft to fly in FZDZ but

not FZRA. The frozen and liquid types are relabeled as

snow (SN) and rain (RA), respectively. The observation

dataset used here clearly is not optimal for performing a

five-category classification. Only a subset of the 551 sta-

tions are augmented by human observers and are able to

report IP and FZDZ; all other stations may erroneously

report a different type and thus contaminate both training

and verification samples with Tw profiles that should be

associated with IP or FZDZ but are not. We accept the

detrimental effect that this might have on the perfor-

mance of our method because our priority is a direct

comparison with Shafer (2015), but we note that our

method might demonstrate somewhat better skill in dis-

tinguishing the different freezing precipitation types if it

were trainedwith an observation dataset like the one from

the Meteorological Phenomena Identification Near the

Ground (mPING) Project (Elmore et al. 2014), which is

more consistent in how it reports IP, FZRA, and FZDZ.

b. Forecasts

Predictors used in this study were derived from the

second-generation Global Ensemble Forecast System

(GEFS) reforecast dataset (Hamill et al. 2013). GEFS

data were extracted for 2-m temperature and 2-m spe-

cific humidity on GEFS’s native Gaussian grid at ;0.58
resolution in an area surrounding CONUS, Alaska, and

southern Canada over the period 1996–2013. Surface

pressure and temperatures, specific humidities, and geo-

potential heights at the pressure levels 1000, 925, 850, 700,

500, and 300hPa were obtained on a ;18-resolution grid

covering the same area. Horizontal grids were bilinearly

interpolated to the station locations and were used to

convert the temperatures at the surface and at the pres-

sure levels into wet-bulb temperatures. Using the geo-

potential height fields, the wet-bulb temperatures at each

pressure level were associated with a certain height above

ground level (AGL)where ground level here refers to the

GEFSmodel grid. Vertical wet-bulb temperature profiles

were obtained by linear interpolation between those
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pressure levels, and then discrete values were taken at

fixed heights up to 3000m AGL. As a result of the rather

coarse model grid resolution of ;0.58, the model grid

elevation and the true elevation at the station locations

differ substantially in regions with complex terrain. To

adjust the resulting biases of the vertical wet-bulb tem-

perature profiles we performed the following steps:

d calculate the biases at the surface as the annual

average difference between observed and (horizon-

tally interpolated) analyzed wet-bulb temperatures at

each location;
d assume that the bias linearly decreases to zero at the

500-hPa level; and
d correct the entire vertical wet-bulb temperature profile

accordingly [i.e., apply the full (additive) bias correc-

tion at the surface and gradually reduce the correction

to zero with increasing height above the ground].

This procedure is notmeant to correct complex forecast

biases that potentially have a seasonal and diurnal cycle;

these are somewhat implicitly addressed by the classifi-

cation method described in the subsequent section. The

procedure described here only tries to remove biases

resulting from the mismatch between the terrain as

represented by the forecast model and the true terrain.

For the remainder of this paper it is our working as-

sumption that the observed precipitation type only de-

pends on the vertical wet-bulb temperature profile

above the ground (i.e., given two identical profiles the

outcome is independent of the location and time of the

year at which those profiles were observed). This is a

simplification that does not account for the microphys-

ical forcing (precipitation rate, degree of riming, etc.)

but is necessary as it allows us to pool data across all

stations and across all dates within the cool seasons

considered here. Figure 1 depicts examples of wet-bulb

temperature profiles at initialization time (i.e., based on

GFS analyses) obtained as described above. Typically,

only about three or four pressure levels are associated

with the section of the profiles shown in this figure. It is

clear that the resulting interpolation error can be sub-

stantial, and adds to the overall uncertainty about the

vertical profiles resulting from initial condition and

forecast uncertainty.

3. Regularized Bayesian classification

The method proposed in this paper is based on

Bayes’s theorem, which has recently been employed

by Hodyss et al. (2016) to derive optimal weights for

different model forecasts and climatology in a sta-

tistical postprocessing approach for continuous

predictands. In our setting, the predictand is cate-

gorical, but the same general principle can be used

as a starting point. Assume that we know, for each

location s and each date t (day of the year and time of

the day), the climatological probability for each

precipitation type k 2 f1, . . . , Kg to occur. Denote

this probability by pkst. Assume further that for each

k we know the multivariate probability density

function (PDF) uk that characterizes the distribution

of the discretized, predicted vertical wet-bulb tem-

perature profiles that are compatible with the ob-

served precipitation type k. For efficient statistical

classification, we want these distributions to be as

different as possible. Figure 1 suggests that the dif-

ferences between profiles corresponding to the dif-

ferent precipitation types are much more pronounced in

the lower half of the sections depicted in the plots, andwe

therefore only consider wet-bulb temperatures corre-

sponding to heights above the surface up to 1500m, even

though the precipitation-generation layer is usually far

outside this range. Sampling the profiles every 100m then

leaves us with a wet-bulb temperature vector of di-

mension d5 16, and uk models the probability distribu-

tion of this vector for each k. Because of our assumption

FIG. 1. Approximate vertical wet-bulb temperature profiles reconstructed fromGEFS forecasts fields at initialization time. For each of

the 5 precipitation types of interest, 30 profiles are depicted that were randomly sampled from locations/dates where that precipitation

type was reported.
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that given two identical profiles the observed pre-

cipitation type should not depend on s and t, uk is as-

sumed constant across the entire spatial domain and

throughout the year (it may vary with lead time though

since there is typically more dispersion around the

mean profile for longer leads). According to Bayes’s

theorem [Wilks 2006, his Eq. (13.32)], given the cli-

matological probabilities pkst, the PDFs uk, and a new,

predicted vector x of vertical wet-bulb temperature

profile values, the conditional probability P(k j x) of

observing precipitation type k is

P(k j x)5 p
kst
u
k
(x)

�
K

i51

p
ist
u
i
(x)

. (1)

In this study we approximate the climatological proba-

bilities pkst by the relative frequencies of observed pre-

cipitation types, calculated separately for each location

s, each month (but pooling all days within a month and

all years for which data are available), and each time of

the day. Sections 3a–d discuss how an adequate model

for uk can be defined and fitted. Note that Eq. (1) is also

the starting point for (quadratic) discriminant analysis,

where a deterministic classification rule is derived from

this equation.

a. Basic model: Multivariate normal distribution

A standard assumption with this approach to proba-

bilistic classification is to let uk be a multivariate normal

PDF (Wilks 2006, his section 13.3.3). This PDF is com-

pletely characterized by its mean vector mk and co-

variance matrix Sk. Given a set of training data we can

estimate mk as the empirical mean and Sk as the em-

pirical covariance matrix of the subset of the training

profiles that correspond to an observed precipitation

type k. To focus on situations where the outcome is truly

uncertain, we only use locations/dates for the calcula-

tion of mk and Sk for which pkst , 0:99 for every

k 2 f1, . . . , Kg. This excludes, for example, precipitation

events in January at high altitudes where precipitation

most likely occurs in the form of snow, and precipita-

tion events in May in Florida, where precipitation almost

surely occurs in the form of rain. These events will still be

used for validation, but excluding them for estimating the

PDFsuk moves themean vectors for rain and snow closer

to the freezing point and improves the distribution fit in

this temperature range where classification is most chal-

lenging. This results in a noticeable improvement in

probabilistic classification skill, and one could even try to

optimize the probability threshold for omitting cases

from the training dataset. However, we do not expect

much further improvement from lowering the threshold

and keep it fixed at 0.99.

Given mk, Sk, and a wet-bulb temperature vector x,

the likelihooduk(x) in Eq. (1) under the assumption of a

multivariate normal distribution is given by

u
k
(x)5 (2p)2d/2jS

k
j21/2

e21/2(x2mk)
0S21

k (x2mk) , (2)

where x0 denotes the transpose of x. Using the eigen-

value decomposition Sk 5EkLkE
0
k to transform x into

vectors uk 5E0
k(x2mk) of centered principal compo-

nents (PCs), this likelihood can be expressed as a

product of univariate likelihoods:

u
k
(x) 5P

d

j51

f
(0,lk,j)

(u
k,j
), (3)

where f(0,lk,j)
is the PDF of a univariate normal distri-

bution with mean 0 and variance equal to the jth ei-

genvalue lk,j of Sk. This reinterpretation of uk(x) in

terms of principal components will later be used to

motivate an easily interpretable and computationally

efficient generalization of the basic multivariate normal

model discussed above. Figure 2 shows the means of the

K5 5 classes of interest and the variability around the

respective mean in the direction of the first eigenvector of

Sk. The different shapes of these eigenvectors suggest that

there is structural information in thewet-bulb temperature

FIG. 2. Empirical means (solid lines) and variability (two standard deviations, dashed lines) in the direction of the first eigenvector of Sk

for each of the five precipitation types distinguished by our algorithm.
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profiles beyond the mean that can be utilized for

classification.

b. First extension: Introducing skewness

Upon closer inspection, the assumption of a multivar-

iate Gaussian distribution made above turns out to be a

coarse approximation of the truth. For example, wet-bulb

temperature profiles much cooler than the mean profile

are still compatible with observing snow, whereas the

probability for observing snow but predicting a relatively

warm profile decreases more rapidly (such profile would

more likely be associated with observing rain).

Applying a power transformation to each component of

the wet-bulb temperature vectors can make the distri-

butions more symmetric (Wilks 2006, his section 3.4.1),

but their direct physical interpretation is lost in that

process. Alternatively, a more complex, multivariate

skew normal distribution could be used to fit the un-

transformed data (Azzalini and Capitanio 1999). In our

setting with dimension d5 16, this requires estimating a

large number of model parameters which is computa-

tionally and numerically challenging. Here, we propose a

similar approach that permits an intuitive interpretation

and straightforward statistical inference.Wefirst proceed

as described above, estimate mk and Sk as the empirical

means and covariance matrices, respectively, of the

wet-bulb temperature vectors associated with each

precipitation type, and use them to calculate the cen-

tered PCs uk,1, . . . , uk,d of each wet-bulb temperature

vector x. Possible skewness can then be addressed for

each PC separately by modeling them by univariate

skew normal distributions fj(k,j),v(k,j),a(k,j) with location

parameter jk,j, scale parameter vk,j, and shape pa-

rameter ak,j. By construction, the PCs are centered and

have variances lk,j, so for given ak,j the location and

scale parameters are determined by

v2
k,j 5 l

k,j

2
412 2a2

k,j

p(11a2
k,j)

3
5
21

and

j
k,j
52v

k,j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2

k,j

p(11a2
k,j)

s
. (4)

Using these relations, ak,j can be estimated via maximum

likelihood. Since the impact of the PCs for smaller ei-

genvalues on classification will be de-emphasized as ex-

plained in section 3c, we only bother to estimate ak,j for

j 2 f1, 2g, and set ak,j 5 0 (i.e., no skewness) for all other

PCs. Figure 3 shows histograms of the first three PCs and

the fitted distributions. The variability in the direction of

the first eigenvector corresponds to cooler/warmer-than-

average wet-bulb temperatures of the entire vertical

profile (see Fig. 2), and the asymmetry of the associated

PCs as described above for snow is clearly visible in those

histograms. The fitted skew normal distributions are ca-

pable of modeling this asymmetry, and for calculating the

likelihood uk(x) one only needs to replace Eq. (3) by

u
k
(x) 5P

d

j51

f
j(k,j),v(k,j),a(k,j)

(u
k,j
). (5)

c. Second extension: Regularization

A further modification to the multivariate PDF uk is

required tomake this Bayesian classificationmethodwork

efficiently. As pointed out in section 2, the reconstruction

of the vertical wet-bulb temperature profile based on the

FIG. 3. Histograms and fitted skew normal distributions for the first three principal components of the wet-bulb temperature profile

vectors of each class.
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GEFS model output at a few available pressure levels

comes with substantial interpolation errors, and especially

features at small vertical scales are not resolved. On the

other hand, even if we could reconstruct those profiles at

high vertical resolution, it is unclear whether their fine-

scale structure carries any useful information for the dis-

crimination between different precipitation types. In the

light of the principal component interpretation of the

multivariate likelihood uk(x) discussed above, it would

seem natural to truncate after a few PCs and omit the last

few terms in the product in Eq. (5), which typically cor-

respond to eigenvectors representing the finescale struc-

ture of the vertical profiles. This is problematic, however,

since the different precipitation types can have very dif-

ferent leading eigenvectors (see Fig. 2) and different

spectra of eigenvalues, and so both the fractions of ex-

plained variances and the subspaces onto which the

profiles are projected would be different. A more ap-

propriate way to mute the effect of higher PCs on the

likelihooduk(x) is to regularize the covariancematrixSk,

that is, to replace it by

~S
k
(a

k
, b

k
)d a

k
S

k
1 b

k
I , (6)

where I is the identity matrix and ak, bk are positive

coefficients for which selection will be discussed later.

This idea of regularization was introduced by Friedman

(1989) in the context of a similar but deterministic

classification technique referred to as regularized dis-

criminant analysis. In our probabilistic setting we will

refer to this idea as regularized Bayesian classification

(RBC). It can easily be combined with our assumption of

skew normal distributions of the PCs by noting that the

regularization in Eq. (6) leaves the eigenvectors un-

changed but turns the eigenvalues lk,j into

~l
k,j
5 a

k
l
k,j
1 b

k
, j5 1, . . . , d . (7)

Setting akd12 bk/lk,1 leaves the first eigenvalue lk,1

unchanged but increases all other eigenvalue with the

relative increase being larger for smaller eigenvalues.

This implies an artificial inflation of the variances of

the univariate, skew normal PDFs in Eq. (5), and

causes the corresponding likelihoods to be relatively

less sensitive to the PCs uk,j corresponding to the

smaller eigenvalues. To find the optimal degree of

inflation (i.e., optimal regularization parameters

b1, . . . , bK), we use the training dataset (forecasts and

observations) that was used to estimate mk and Sk, and

proceed as follows:

d for given parameters b1, . . . , bK, and for every wet-

bulb temperature profile x in the training dataset, use

Eqs. (1), (5), (4), and (7) to calculate the likelihoods

uk(x) and resulting forecast probabilities P(k j x) for
each k; and

d use the corresponding training observations to calcu-

late the resulting Brier skill scores BSSk (see section 4

for a definition) and choose b1, . . . , bK such that the

sum �K

k51BSSk is maximized.

Note that the target function �K

k51BSSk that we

seek to maximize gives the same weight to all

precipitation-type categories despite their very dif-

ferent frequencies of occurrence. This is done on

purpose to foster good performance of our method

with regard to the rare freezing precipitation types.

Different priorities can be set, however, by in-

troducing weights that increase or decrease the im-

pact of the skill for certain precipitation types on the

target function. In our example, the optimal values of

bk were between 5 and 10 for all k, which is smaller

than the second, but about 2–3 times larger than the

third eigenvalues of Sk (see Fig. 3). This suggests that

useful information about the vertical structure of the

wet-bulb temperature profiles is limited to the first

two principal components.

d. Third extension: Applying RBC to ensemble
forecasts

The RBC approach presented above yields forecast

probabilities for the occurrence of each precipitation

type given a single (i.e., deterministic) forecast of a

vertical wet-bulb temperature profile. In our situation

where we have an ensemble of forecasts, this ensemble

represents some of the uncertainty about the predicted

vertical wet-bulb temperature profiles, and its use can

thus reduce the amount of variability that is modeled

purely statistically. We proceed as before regarding

the estimation of mk, Sk, and the skewness parame-

ters ak,j, considering the forecast profiles x1, . . . , xM of

the M ensemble members as separate cases. Center-

ing and projecting those profiles onto the eigenvec-

tors of Sk yields principal components uk,j,m and M

different likelihoods uk(xm) for each class. The re-

sulting probability forecasts P(k j xm) can be com-

bined to a single probability forecast by simply taking

the mean for each class:

P(k j x
1
, . . . , x

M
)5

1

M
�
M

m51

P(k j x
m
) . (8)

This way of linear pooling, however, does in general not

yield reliable probability forecasts even if all of the in-

dividual member probability forecasts P(k j xm) are re-

liable (Ranjan and Gneiting 2010). Indeed, as pointed
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out above, the simultaneous consideration of different

ensemble member forecasts explains some of the vari-

ability of the forecast profiles, and so in return the sta-

tistically modeled variability needs to be reduced to

avoid underconfident probability forecasts. We do this

by replacing the variances lk,j of the principal compo-

nent PDFs that were originally obtained as the eigen-

values of Sk by the empirical variances yk,j 5 var(uk,j) of

the ensemble-mean PCs:

u
k,j
5

1

M
�
M

m51

u
k, j,m

.

While this is equivalent to just operating on the

ensemble-mean profiles, evaluating Eq. (1) with an

ensemble-mean profile does not yield the same proba-

bilities as Eq. (8) due to the nonlinearity of the likelihood

function;Eq. (8) averages the probabilities corresponding

to the different atmospheric situations represented by the

ensemble, as opposed to averaging the vertical profiles

and deriving a probability from the averaged state of the

atmosphere. In contrast to lk,j, which describes the vari-

ability of a certain PC over all profiles in the training

dataset corresponding to a certain precipitation type, yk,j
elides the variability within the ensemble, and is therefore

smaller than lk,j. All subsequent steps [i.e., regularization

according to Eq. (7), calculation of likelihoods according

to Eqs. (5) and (4), and calculation of probability fore-

casts according to Eqs. (1) and (8)], remain the same as

before, but are carried out based on yk,j instead of lk,j.

The results in the following section will show that this

reduction of statistically modeled variability in favor of

dynamically explained variability yields a noticeable im-

provement of predictive performance at longer forecast

lead times.

4. Results

To test our RBC approach and compare it against

the operational MOS technique, we adopt the verifi-

cation setup used by Shafer (2015), but study only the

case of a training sample comprising five cool seasons

(see section 2). Forecasts were produced and verified

for the cool seasons 2001–12. For each of these verifi-

cation seasons, the methods were trained with data

from the previous five cool seasons [i.e., the statistical

model used for producing probability forecasts for the

cool season 2001 was set up based on data (forecasts

and observations) from the cool seasons 1996–2000].

For estimating the climatological frequencies, which

are used as a reference forecast on the one hand, and

as a prior distribution for our RBC technique on the

other hand, the entire observation record was used.

This may be justified by noting that in practice long

time series of observations are often available while

forecast systems keep evolving and available forecast

time series from a stable system are typically much

shorter.

First, we assess the reliability of the RBC probability

forecasts for different lead times separately for each

precipitation type. Figure 4 depicts reliability diagrams

for probability forecasts generated by the ensemble-

based version of the RBC method. For all forecast lead

times considered in this study (including those not shown

in this figure), the curves are close to the diagonal, which

means that the relative frequency of occurrence of each

precipitation type matches the probability with which it

was predicted.

The RBC probability forecasts based on the GEFS

control run only were equally reliable (not shown

here), so as a second validation tool we consider a

quantitative performance measure, the Brier skill score

[BSS; Wilks 2006, his Eqs. (7.34) and (7.35)]. In addi-

tion to reliability, the Brier score evaluates the reso-

lution of a forecast (i.e., its ability to distinguish

situations with different frequencies of occurrence). A

skill score relates the score of the forecast method of

interest to a reference score (here: climatological fre-

quency of occurrence, calculated separately for each

location, each month, and each time of the day) and

thus facilitates its interpretation (Wilks 2006, his sec-

tion 7.33). Here, we compare the BSSs of the general-

ized operator equation (GOE) implementation of the

operational MOS PoPT technique described in Shafer

(2010, 2015) and GEFS ensemble mean forecasts, the

RBC method based on the GEFS control run only, and

the RBCmethod using each of the individual ensemble

member forecasts for forecast lead times up to 192 h.

The MOS PoPT approach currently only distinguishes

three classes: frozen (SN), liquid (RA), and freezing

(IP, FZRA, or FZDZ). To allow a direct comparison,

we aggregate the five class RBC probabilities to three

class probabilities, and compare the BSSs for the three

class probabilities of all threemethods on the one hand,

and the BSSs for the IP, FZRA, and FZDZ probabili-

ties by the two RBC implementations on the other

hand. The results depicted in Fig. 5 permit several

conclusions:

d the use of ensemble forecasts as opposed to a single

deterministic run clearly benefits forecast perfor-

mance, especially for longer forecast lead times;
d for the frozen and liquid class, the improvement of the

RBC ensemble method over theMOSPoPT approach

is marginal; if theMOSPoPT approach were extended

such as to use the individual ensemble member
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forecasts rather than the ensemble mean, there may

be no improvement at all;
d for the particularly challenging, freezing category,

however, there is a noticeable benefit of using a

statistical method (such as RBC) that can use the full

vertical wet-bulb temperature profile as a predictor;

and
d the skill for the freezing categories (especially IP and

FZDZ) is low compared to the skill for RA and SN;

yet our RBC method can provide skillful probabilistic

guidance on freezing precipitation several days ahead,

and even has the potential to separate IP, FZRA,

and FZDZ.

The results discussed above show the effectiveness

of our RBC method in general and the utility of en-

semble forecasts in particular. How about the other

two extensions (modeling skewness of the PCs and

regularization)? How much do they contribute to the

skill of the RBC approach? How much skill is lost if

the available training data for estimating mk, Sk, bk,

and ak,j is composited of just one instead of five cool

seasons? To answer these questions we use the control

run based RBC method (fitted with 5 yr of training

data, as above) as a benchmark and compare it to 1)

the same model fitted with training data from a single

cool season, 2) a simplified model that regularizes Sk

according to Eq. (6) but assumes normal instead of

skew normal distributions of the PCs, and 3) a sim-

plified model that uses skew normal distributions but

does not regularize the empirical covariance matrices.

The following conclusions can be drawn from the re-

sults shown in Fig. 6:

1) Reducing the training sample size hardly affects the

performance in predicting SN and RA probabilities,

but has a rather strong, negative impact on the

predictive performance for IP, FZRA, and FZDZ.

For the two former, there are still enough cases

within a single cool season to warrant a good estima-

tion of model parameters. Estimating the parameters

for the rare, freezing precipitation types, however,

FIG. 4. Reliability diagrams for probability forecasts at various forecast lead times generated by the ensemble-based version of the

RBCmethod with probabilities rounded to a precision of 0.05. The inset histograms depict the frequency (on a logarithmic scale) with

which the respective probabilities were forecast (x axes are the same as in the reliability diagrams). Points of the reliability curve

associated with very infrequent forecast probabilities (,25 cases) are subject to substantial sampling variability and have therefore

been omitted.
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requires either several years of training data or a

much denser observation network. In addition to

the issue of boundary discontinuity, this is also an

argument in favor of pooling data across all loca-

tions as opposed to partitioning the country into

more homogeneous subdomains. The latter might

better account for different regional characteris-

tics, but Fig. 6 suggests that these benefits could be

nullified by the concomitant reduction of training

sample size.

2) Simplifying the RBC approach by assuming a

multivariate normal distribution for the wet-bulb

temperature profiles affects the predictive perfor-

mance in the opposite way. While the more flexible

distribution model does not seem to benefit the

freezing precipitation types, the better approxima-

tion of the distributions of SN and RA profiles that

result from modeling skewness in the PCs trans-

lates into improved skill of the resulting probability

forecasts.

3) Finally, Fig. 6 highlights the necessity of regulariz-

ing the empirical covariance matrices. Without

regularization, skill drops dramatically for SN and

RA and becomes negative beyond a forecast lead

time of 3 days. For the freezing types the impact is

even stronger and lack of regularization results in

BSSs around 21.0 for all lead times. Unregularized

classification gives as much emphasis to the noisy,

unwarranted finescale structure of the wet-bulb

temperature profiles as it gives to the first PCs that

represent meaningful features of these profiles, and

this results in probability forecasts that are entirely

off the mark.

To illustrate the capabilities and limits of probabilistic

guidance obtained with the RBC method applied to

GEFS ensemble forecasts, two particular case studies

are presented. Figure 7 shows spatial maps of FZRA

probabilities for 0000 UTC 27 January 2009 with a

forecast lead time of 2, 4, and 6 days ahead. This date is

in the middle of a major ice storm that impacted parts

of Oklahoma, Arkansas, Missouri, Illinois, Indiana,

West Virginia, and Kentucky. The plots suggest that

the GEFS captured the atmospheric situation well, and

the RBC methods provide a strong probabilistic signal

for freezing rain even at 6 days of lead time. For the

event shown in Fig. 8 [also studied by Reeves et al.

(2016)] the situation is more complex. The plots show

observed precipitation types and 2-day-ahead RBC

forecast probabilities for 0000 UTC 22 February 2013.

Even at this short lead time, the probabilistic signal for

the freezing precipitation types is rather weak (note the

different color scales) and no clear guidance is pro-

vided as to which particular freezing precipitation type

FIG. 5. Brier skill scores of the probability forecasts obtained with the operational MOS approach and the RBC

methods based on the control run and based on the full ensemble.
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will dominate in each geographical area. This under-

scores the inherent uncertainty in precipitation-type

forecasts based on a global ensemble prediction sys-

tem, and illustrates the limits of such forecasts. Not-

withstanding, the RBC probability forecasts indicate an

increased risk of freezing precipitation, and we believe

that there is substantial value in communicating that risk

to decision-makers.

5. Discussion

In this paper we have proposed a method for condi-

tional probabilistic precipitation-type forecasting that is

based on a statistical model for the predicted vertical

wet-bulb temperature profiles that are compatible with

each precipitation type. Using Bayes’s theorem this

model can be inverted such that it yields probability

forecasts for each precipitation type given a new pre-

dicted profile.

There were many sources of forecast and data

uncertainty that needed to be accounted for in a

precipitation-typing methodology. These include fore-

cast errors stemming from initial condition uncer-

tainty, frommodel error, and in this case from the need

to interpolate NWP model output from a relatively

coarse horizontal grid and a few pressure levels to a

much finer horizontal and vertical resolution and more

complex orography at the surface level. Availability of

sigma-level forecast data at a finer vertical resolution

could reduce this last component of uncertainty, which

contributes noticeably to the overall uncertainty about

the wet-bulb temperature profiles at short lead times.

It is suggested that thermodynamic variables be ar-

chived at many vertical levels above the surface when

generating future reforecasts. At longer lead times,

forecast errors become the dominant source of uncer-

tainty, and the interpolation error might be negligible.

At short lead times, forecasts from a high-resolution,

limited-areaNWPmodelmight be available, whichmight

be accurate enough to yield superior classification

results using an explicit precipitation-type diagnosis

scheme (e.g., Benjamin et al. 2016) or the spectral bin

classifier proposed by Reeves et al. (2016), and such

guidance could be implemented in a probabilistic

framework, too.

The strength of the method proposed here is that

it can handle the large uncertainty that inevitably

comes with predictions from a global forecast system,

and that it can still provide reliable, probabilistic

precipitation-type forecasts at forecast lead times up to

7 days ahead. It has sufficient skill to give decision-makers

at least a heads up about precipitation-type-related

FIG. 6. Brier skill scores of the probability forecasts obtained with variants of the RBC method (applied to the

GEFS control forecast) that use only one year of training data, normal instead of skew normal distributions, or

unregularized covariance matrices Sk.
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weather risks, and it can easily be extended to distin-

guish further precipitation-type classes like mixtures of

snow and rain, mixtures of freezing precipitation types,

and so forth, if they are reported accurately in the ob-

servations. The observation dataset used here is not

optimal in that regard as it is inconsistent in how it re-

ports IP, FZRA, and FZDZ, and the skill of our method

in distinguishing these types might actually be better

than reported here if it were trained with an observation

dataset like the one from the mPING project (Elmore

et al. 2014, 2015) in which IP, FZRA, and FZDZ are

distinguished more systematically.

We have focused on vertical profiles of wet-bulb

temperature as a predictor variable. However, by

combining the statistical dimension reduction/regularization

techniques used here with more physically motivated

aggregation methods one might be able to further im-

prove skill by using additional predictors such as rela-

tive humidity profiles. Alternatively, one could use

modern machine learning techniques like neural net-

works to identify features of vertical wet-bulb temper-

ature and humidity profiles that determine the observed

precipitation type. While extremely powerful, these

techniques typically require large datasets for train-

ing, but these may become available once several

years of mPING data have been collected, and allow

one to explore the more data-intensive machine

learning techniques.

FIG. 8. Observed precipitation types at 0000 UTC 22 Feb 2013, and predicted precipitation-type probabilities by the ensemble-based

RBC method with a forecast lead time of 48 h.

FIG. 7. Observed precipitation types (shaded circles with color scheme as in previous figures) at 0000 UTC 27 Jan 2009 and predicted

freezing rain probabilities by the ensemble-based RBC method for different forecast lead times.
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